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A three-parameter solution of the static Einstein-Maxwell 
equations 
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Department of Mathematics, Queen Elizabeth College, University of London, Campden 
Hill Road, London W8 7AH, UK 

Received 24 July 1978 

Abstract. The solution represents the external field of an isolated mass carrying electric 
charge and dipole moment. 

1. Introduction 

A class of solutions of the axially symmetric electrostatic problem in general relativity 
was obtained by Weyl (1917). Weyl’s class consists of space-times in which the 
gravitational and electrostatic potentials are functionally related. Another class of 
solutions, without spatial symmetry but with functionally related potentials, was found 
by Majumdar (1947) and by Papapetrou (1947). I obtained a solution (Bonnor 1966), 
without functionally related potentials, referring to a massive electric dipole. This was 
found by transforming the Kerr vacuum solution into an electrostatic space-time; it 
depends on two parameters. This procedure has since (Onengiit and Serdaroglu 1975) 
been extended to the Tomimatsu-Sat0 vacuum solutions, which have been transformed 
to yield some (extremely complicated) two-parameter electrostatic space-times. 

Recently Chandrasekhar (1978) has suggested a new way of solving the stationary, 
axially symmetric vacuum equations, and in this paper I use his method to obtain a new, 
comparatively simple axially symmetric electrostatic solution depending on three 
parameters. 

2. Field equations 

The equations to be solved are those of Einstein-Maxwell theory in the absence of 
matter: 

Rik = 2FqFka - igikFabFab (2.1) 

where Rik is the Ricci tensor and f i ’ k  is the electromagnetic field tensor which satisfies 
Maxwell’s equations, 
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In the electrostatic problem all variables are independent of the time t (5 x4), and (2.2) 
is satisfied if we take 

4 being the electrostatic potential. 
The metric in the axially symmetric case may be taken as (Weyl 1917) 

ds2=-eA(du2+d82)-F-2  A2d$2+F2dt2  (2.6) 

where x 1  = U, x2  = 8, x 3  = I) and A, A, F and q5 are functions of U and 8 only. Because of 
the field equations (2.1) A satisfies 

where subscripts 1 and 2 mean differentiation with respect to U and 8 respectively. 

the equation for i = 4 of (2.3). Taking linear combinations of these and putting 
The entire solution is determined by two equations, the (44) equation of (2.1) and 

we obtain two equations equivalent to two given by Chandrasekhar (his (47)): 

(X + Y)VZX = 2 v x .  vx 
( X +  Y)VZY=2VY.VY 

(2.9) 

(2.10) 

where Vz and V denote respectively the Laplacian and gradient operators in the 
three-space with metric 

e’(du2 + de2) + A’ d@, (2.11) 

~ ( u ,  8) being arbitrary. Once X and Y are found, the function A in (2.6) is determined 
up to an additive constant by the other field equations (2.1) (Bonnor 1953). Weyl’s 
solutions are obtained by allowing X and Y (or F and 4) to be functionally related. 

In this paper we shall choose U and 8 to be prolate spheroidal coordinates so that the 
appropriate solution of (2.7) is 

A = a sinh U sin 8, (2.12) 

a being an arbitrary constant. If we demand that the three-space (2.11) is flat we find 

er = az(cosh2 U -cosz e), 
though this will not be used in the sequel. Written out in these coordinates, (2.9) and 
(2.10) become 

( X +  Y ) ( X I ~ + X ~ ~ + X ~ C O ~ ~ U + X ~ C O ~ ~ ) = ~ ( X :  + X i )  (2.13) 

( X +  Y)(Yi i+  Y z z + ~ ~ t h  u Y ~ + c o ~  8Yz)=2(Y: + Y i ) .  (2.14) 
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3. The solution 

It is convenient to introduce new independent variables 

q = cosh 8 cL=cose ;  

(2.13) and (2.14) take the form 

(3.3) 

Adapting a prescription of Chandrasekhar (1978) we seek solutions of (3.2) and (3.3) of 
the form 

X = (a1 + u ~ F ) / ( u ~  + a4F) Y = (61 + 62G)/(b3 + 64G) (3.4) 

where a1 . . . a4,  bl . . . b4 are real constants and 

F =f1q +f2F 

f l ,  f2, gl, g2 being further real constants. 

The result can be expressed in the form 

G = 8177 + gzp, 

The substitution of (3.4) into (3.2) and (3.3) is a long but straightforward calculation. 

F =t(x + Y) = ~ ( i  - BU-’ - CV-’)  

4 +(X - Y )  = K(CV-’  - BU-’ )  (3.6) 

(3.5) 

where 

U = B +A& - q  

A,  B, C and K being constants satisfying 

BC = A’ - 1. 

V = C +AF + q, (3.7) 

(3.8) 
In arriving at (3.6) we have taken advantage of the fact that 4, the electrostatic 
potential, occurs in the field equations only in the form of its derivatives: this allows us 
to add to it a constant which brings 4 into the convenient form (3.6). An inspection of 
the metric (2.6) and the definition (2.5) of 4 shows that the constant K can be removed 
from the solution by the coordinate transformation 

t = K-’t’ * = K*’ 
leaving three independent constants in the solution so far, namely a introduced in 
(2.12) and two of A,  B and C. We henceforth assume K removed, and drop the primes 
on 4 and t. 

It is clear from (3.5) and (3.6) that F and 4 are functionally independent so this 
solution is not in the Weyl class. 
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The function A can be found from the other field equations (2.1) by quadrature. The 

(3.9) 

E being an arbitrary constant which we shall choose so that the metric (2.6) shall obey 
the condition of elementary flatness on the rotation axis away from singularities (i.e. so 
that the circumference of a small circle with centre on the axis shall be 27r times its 
radius). This requires 

E = a’. (3.10) 

result is 
e* = ~ ( 7 7 ’ -  p 2 ) - 3 ~ Z ~ ’ ( ~ ~ -  cu - BV)’, 

The solution can now be written 

ds2 = - a z u 2 V 2  ( U V - B V - C U ) ’  dq’ d p 2  (q2-1)(1-p2)d$’  
(-+-) + ( U V -  B V -  CV)’ 

d t2  
(UV - BV - CU)’ 

U’ v2 + (3.11) 

q5 = (CU - B V ) U - ’ v - ’  (3.12) 

where q, p, defined by (3.1) are used instead of u and 8, where Uand Vare given by (3.7) 
and where the constants A ,  B, Cand a satisfy the relation (3.8). This is the main result of 
the paper, but an interpretation follows. 

4. Interpretation 

The transformation 

x = a(q’- I)’”(I -p’ ) l / ’  cos r / ,  

y =a(q’ -~ )1~’ ( ( l -p2)1 ’2s in  4 
z = aqp 

takes the solution (3.11) and (3.12) into 

ds2 = -( 1 + 2(c - B)a+O(R-’))(dx2 +dy2+dzZ)  + +O(R’))  d t 2  
R 

(4.1) 

+ O(R -3) 
(B + C)a A(C - B)a’p (B’ - C2)a2  

R’ 
+ - 

R 2  4 =  (4.2) 

where R’ = x’ + y’ + 2’. The solution is therefore asymptotically flat, the leading terms 
corresponding to an isolated mass m with electric charge e and electric dipole moment d 
given by 

m = ( C - B ) a  e = ( C + B ) a  d = a’A(B - C )  = -bm, (4.3) 
the arbitrary constants now being m, e and b (= aA)?. 

t For convenience the constant b is taken to refer to an electric dipole moment d defined in (4.3). However, as 
in classical electrostatics, the dipole term in 4 can be removed (provided e # 0) by shifting the origin with a 
transformation R* = R + n cos 6, where n is a suitable constant. It is therefore strictly more correct to regard 
b as referring to the distribution of higher multipoles. 
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The solution (3.11) and (3.12) may be written in terms of spherical coordinates r, 6 
and IJ by means of the transformation 

1 ag=r -Zm CL = COS e. (4.4) 

(4.5) 

(4.6) 

The result is 

ds2 = - W2[P2Q-3(Z-’ dr2 + de2) +ZP-2 sin2 e dIJ2] + P2 W-’ dt2 

4 = W-’[e(r-im)-mb cos e ]  
where 

P = (r-$m)’-a2+b2 sin2 0 

Q=(r -$m)2-u2cos2e  

W = r2 - (b cos 8 + ;e)’ 
(4.7) 

1 2  2 .Z=(r - -m)  -U 

and the arbitrary constants a ,  b, e and m are connected by 

u 2 =  b2+a(m2-e2),  (4.8) 

a relationship which follows from (3.8) and (4.3). The singularity structure is compli- 
cated, but the singularities are all enclosed inside some finite surface; for if 1 denotes the 
greater of lul + IimI and Ibl+ lie/, then the singularities are within 

r = l ;  

therefore the ranges of the variables may be taken as 

r > l  o s e s r  OSIJS277 -a) < t <a). (4.9) 
This space-time is, of course, incomplete, but it can be regarded as a possible exterior to 
some charged matter distribution. It is to be emphasised that there are no singularities 
on the rotation axis for r > 1. 

The following specialisations of the solution may be of interest. 
(i) e = 0, m # 0, b # 0. The solution reduces (if m is replaced by 2m and some 

unimportant changes in notation are made) to the dipole solution (Bonnor 
1966). 

(ii) b = 0, m2 9 e’. It reduces to a (non-spherically symmetric) Weyl solution. 
(iii) b = 0, m2 = e’. The solution is equivalent to the Reissner-Nordstrom solution 

with m = e  . 
(iv) m = 0, e = 0. The solution is flat. 
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